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ABSTRACT

In 2002, the Milwaukee Metropolitan Sewerage District (MMSD) began to explore 
the potential for Low-Impact Development (LID) techniques to help development 
projects meet the District’s storm water management regulations.  One general 
concern associated with using LID was the apparent complexity of determining the 
cumulative hydrologic effect of relatively small, interconnected LID components 
such as green roofs, bioretention cells, permeable pavements, etc.

An adaptation of the Natural Resources Conservation Service (NRCS) unit 
hydrograph method was developed to provide an approach to the LID hydrologic 
analysis that remained relatively simple. This adaptation aggregates the LID retention 
volume across the site and treats that volume explicitly as a depth of runoff (i.e., 
excess rainfall) that must be exceeded before the convolution calculations generate a 
positive value for the runoff hydrograph. For practical purposes, this approach 
compared favorably against other alternatives, such as adjusting the composite NRCS 
curve number for the site, or treating all the retention volume as if it were an in-line 
storage volume situated immediately above the drainage area outlet.

Calculations for the preferred approach have been formulated in a spreadsheet that 
allows the user to input the amount of retention provided by each of several kinds of 
LID components, and then see immediately a recalculated hydrograph that reflects the 
predicted effect of the aggregate retention volume.  The spreadsheet, which has been 
dubbed the “LID Quicksheet”, is expected to be incorporated along with its 
documentation into the MMSD stormwater management guidance.
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INTRODUCTION

The Milwaukee Metropolitan Sewerage District (MMSD) has established a set of 
stormwater management requirements pertaining to development or redevelopment 
projects that cause an increase in the impervious surface area of 1/2 acre or more. 
(MMSD 2002a)  Communities have considerable flexibility in choosing how to 
comply with the new requirements (MMSD 2002b).

Communities that approve of a site-specific approach can submit stormwater 
management plans that demonstrate compliance with Unit Release Rate (URR) 
requirements.  This means that peak flows should not exceed 0.50 and 0.15 cubic feet 
per second per acre for the 1% and 50% annual exceedance probability storms, 
respectively.

An optional set of requirements is associated with what is called the Volumetric 
Design Procedure (VDP).  VDP requirements can be met when the volume of runoff 
generated during a critical period within the design storm does not exceed the 
corresponding predevelopment volume.  The critical period generally corresponds to 
a period of high flow in main channel of the watershed in which a site is located.  
Critical periods for major watersheds in the District have been predetermined.

This paper describes technical considerations associated with a software tool that was 
developed so that stormwater engineers and plan reviewers might, without excessive 
effort, establish the degree to which a low-impact development approach would 
satisfy the URR or VDP requirements for a given site.

METHODOLOGY

As the effort to find or develop an appropriate technical approach initially got 
underway, stormwater engineers within the MMSD service area were already 
submitting stormwater management plans that applied conventional NRCS methods 
for calculating runoff peaks, volumes and hydrographs, as in TR-20 (NRCS, 1984).  
Since the use of NRCS methods was a matter of standard practice, an adaptation of 
these methods to incorporate LID design was generally favored over an entirely new 
approach.  Several adaptations were explored.

The familiar NRCS runoff depth formula, as given in TR-20, is
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( ) SIP
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Q

a

a
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2

(1a)

where Q = runoff depth
P = precipitation depth
S = potential maximum retention after runoff begins
Ia = initial abstraction, volume that must be filled before runoff begins
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Additionally, S is related to the NRCS curve number CN, which reflects soil 
conditions land use, and antecedent moisture conditions, as

10
1000 −=
CN

S . (1b) 

The standard method for generating a runoff hydrograph using the SCS unit 
hydrograph with convolution calculations involves the following steps for each time 
increment:

1. Within the storm event, calculate the total rainfall up to that point in time.
2. Check the total rainfall against the capacity that needs to be filled on the 

land surface (the initial abstraction) before runoff can occur.  That is, 
determine whether P has become greater than Ia.

3. If the total rainfall has exceeded the initial abstraction, calculate the total 
runoff depth (i.e., excess rainfall) using Equations 1a and 1b.

4. Calculate the incremental increase in runoff depth associated with the time 
step.

5. Construct a hydrograph that represents the outflow generated by the single 
increment of runoff volume, based on the unit hydrograph for that 
drainage area.

6. Repeat for each time step within the storm, producing a component 
hydrograph associated with the runoff increment for each time step.

7. Add the component hydrographs to establish a total storm hydrograph for 
runoff at the outlet.

This basic algorithm was incorporated into a spreadsheet so that modifications to the
calculations could be readily tested.

Five options based on the NRCS unit hydrograph calculations were compared. Two 
of the options perform calculations directly on the unadjusted runoff hydrograph that 
is created using the standard NRCS approach.  For those two options, retention is 
accounted for after the total storm hydrograph is established, i.e., after Step 7 above.  
The remaining three options execute different modifications of the NRCS runoff 
depth formula.  In each of those three options options, retention is accounted for in 
the depth calculations before a hydrograph is generated, i.e., before Step 5 above.

Option 1.  Truncate the runoff hydrograph

One approach to evaluating the impact of on-site retention on a drainage area is to 
calculate the runoff hydrograph normally and then truncate the runoff hydrograph 
(Prince George’s County, 1999).  This method is equivalent to treating all the storage 
as if it is situated at the drainage area outlet.  The rate of runoff is assumed to be zero 
until all the storage capacity  has been completely filled, and thereafter there are no 
restrictions to flow through the outlet.
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Option 2.  Reduce the amplitude of the runoff hydrograph in direct proportion 
to the reduction in runoff volume

This option involves multiplying the unadjusted hydrograph ordinates by the ratio of 
the LID runoff depth to the unadjusted runoff depth, as:





=

NoLID

LID
NoLIDadjust Q

Q
qq (2) 

where qadjust = ordinate of adjusted runoff hydrograph
qNoLID = ordinate of unadjusted runoff hydrograph 
QLID = total depth of runoff associated with LID
QNoLID = total unadjusted depth of runoff 

This approach is somewhat comparable to the way a Modified Rational Method is
used to generate triangular runoff hydrographs (although that approach assumes a 
storm of uniform intensity).  If the runoff volume is accounted for solely through 
changes in land cover but the time concentration does not change, the height of the 
hydrograph is reduced proportionately but the base is not.

Option 3.  Subtract retention from rainfall

Letting R represent the total retention volume divided by total drainage area, the 
calculation of runoff using this approach can be formulated as follows:

( )
( ) SRIP

RIP
Q

a

a
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2

(3) 

Subsequently, the analyst can perform the usual unit hydrograph calculations.  

Option 4.  Subtract retention from runoff

Subtracting retention from the depth of runoff generated by the land surface can
account for the retention explicitly, as expressed by this formula:

( )
( ) R

SIP

IP
Q

a
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2

(4) 

Executing this option involves subtracting the retention volume from the leading edge 
of the excess rainfall hyetograph before the convolution calculations are performed.
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Option 5. Adjust CN for 24-hour storm depth

A standard assumption given in TR-20 is that Ia = 0.2S.  Consequently, the NRCS 
standard runoff equation is sometimes expressed as

( )
SP

SP
Q

8.0

2.0 2

+
−= (5) 

Subtracting the total retention from the total runoff at the end of a storm event gives a 
runoff value that a different S value can be based on. The equation 

( )
SP

SP
RQ

8.0

2.0 2

+
−=− (6) 

can be solved for a revised value of S, which will increase with increases in retention, 
and then a revised CN value can be calculated from the revised S.  That revised CN
can subsequently be used to generate a new runoff hydrograph.

RESULTS

For each of the options considered, a family of curves was generated to illustrate the 
expected reduction in peak flow corresponding to different amounts of storage 
provided on site.  An example of one such family of curves is shown in Figure 1.
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Figure 1. Changes in runoff hydrograph associated with Option 4.

It was also of interest to determine how the amount of retention storage needed to 
reduce the peak flow to a given level compared with the estimated volume of a 
detention pond that would otherwise be required to achieve the same level.  For 
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several peak flow reduction values, the detention pond volume was estimated simply 
by extending a line segment from the leading edge of the hydrograph to the target 
peak value on the recession limb of the hydrograph, and subsequently obtaining the 
area of the hydrograph above the line segment.

Predicted reductions in peak flow were compared among all the storage options.  A 
comparison based on one selected set of hydrologic parameters is shown in Figure 2.
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.  Comparison of different methods of accounting for runoff storage. 
(CN = 75, Tc=1 hr, D.A. = 1 km2)
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tuality, the distribution of retention features within a drainage area, and 
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 this approach predicts larger peaks when 50% or more of the runoff is 
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Option 3.  Using this approach, the volume of retention provided will not be fully 
accounted for.  Just as runoff is always less than rainfall when the standard NRCS 
runoff formula is used, this calculation will generate a change in runoff volume that is 
always less than the volume of retention actually provided.

Option 4. Accounting for the runoff volume as described in Option 4 predicts in the 
least amount of runoff for all but the highest levels of peak runoff reduction.  The 
relationship between peak flow and storage volume is nearly identical to that for 
detention storage.

Option 5.  The CN adjustment method will produce a different CN value depending 
on the depth of precipitation used, even if the land cover, soil characteristics, 
antecedent moisture conditions and the amount of added retention remain the same.  
As a rule, for levels of precipitation that are below the level on which the CN
adjustment is based, this approach will underestimate the availability of storage.  
Above the precipitation level on which the CN adjustment is based, this approach will 
overestimate the availability of storage.

Figure 3 shows a comparison of depth calculations for Options 3 (“P minus R”), 4 
(“Q minus R), and 5 (“CN Adjustment”).  Relative to the standard runoff curve, 
Option 3 moves the runoff curve to the right, and Option 4 moves it downward.  The 
curve drawn using Option 5 starts somewhat to the right of the standard curve, and 
ends where the difference in runoff is equal to the total depth of retention.
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Figure 3.  Comparison of depth of runoff calculations.
(CN = 80; overall retention depth = 10 mm)
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Figure 3 illustrates the particular case in which a runoff curve has been drawn based 
on a CN that was adjusted using Equation 6 for a rainfall depth of 80 mm and a 
retention depth of 10 mm.  The adjusted curve gives a runoff value of approximately 
13 mm for 60 mm of rainfall.  However, if a CN is recalculated using Equation 6 for a 
rainfall depth of 60 mm, the amount of runoff is approximately 10 mm (which is only 
coincidentally equal to the amount of storage).  But since the accumulation of 
precipitation from 0 to 80 mm necessarily passes through the value of 60 mm, it 
seems reasonable to expect that the runoff depth associated with 60 mm should be 
exactly the same for the same land use and soil type, regardless of whether a given
storm happens to contribute additional rainfall beyond the 60 mm.

PROJECT OUTCOME

Subtracting the aggregate retention depth from the runoff depth (Option 4) was 
ultimately selected as the approach to hydrologic analysis that would be implemented 
in a spreadsheet.  A thumbnail graphic of the spreadsheet resulting from this effort is 
shown in Figure 4.  The three-page format is designed to make these calculations easy 
to present and review when incorporated into formally submitted stormwater 
management plans.  The spreadsheet has been dubbed the “LID Quicksheet”.

LID QuickSheet 1.1
SITE SUMMARY Enter data into the shaded boxes only.

Line PRECIPITATION and DRAINAGE AREA
1a 100 years Return period for this storm event.
1b NRCS Type II Rainfall distribution.  See RainDistribution sheet to change.
2a P 5.88 inches Total precipitation.
2b A 100.0 acres Drainage area.
2c CN minimum 25 CNs must be greater than this value to generate runoff.

NoLID DESIGN
3a CN 85 Area-weighted average for the NoLID site design.
3b Tc 30 minutes Cannot be less than 5 minutes.

LID DESIGN
Standard CN Determination

4a CN 78 Area-weighted average for the LID site.

Optional CN Determination If option not used, enter zeroes in Lines 4b-4d.
4b CNp 70 Composite CNp for pervious areas alone.

4c Pimp 30% Actual percent impervious.
4d 0.2 Decimal <= 1.0. Ratio of unconnected impervious area to total impervious area.

(Enter "0" as the ratio if total impervious area is greater than 30% of site.)

4e CN result: 77 (The "CNc" in TR-55 Appendix F)

4f Selected CN 77 Enter the value from Line 4a or Line 4e.
4g Tc 45 minutes Cannot be less than 5 minutes.

LID Retention Features For individual features, compare the contributing runoff with the capacity,
and take the lesser of the two.  Summarize on SubareaCheck sheet.

Rain Garden Capacity
5a 6.0 inches Average ponding depth.
5b 16.0 inches Average soil mix depth available for retention (24 inches or less).
5c 0.2 (unitless) Average fillable porosity. Design Volume
5d 9.2 inches     Storage per unit area. acre- gallons

feet (thousand)
5e Rain Garden 4.0% of drainage area used for rain gardens. 3.07 999
5f Coverage 174240 sq.ft. (average of top and bottom areas)

6a Rain 55.0 gallons Capacity of each rain barrel.
6b Barrels 100 Number of rain barrels. 0.02 6

7a Green Roofs 3.0 inches Maximum Water Capacity (MWC).
7b 0.50 Multiplier between 0.33 and 0.67.
7c 10000 sq.ft. Area. 0.03 9

8 Cisterns 1000 cu.ft. Sum of all cistern volumes. 0.02 7

9a Permeable 5.0 inches Storage depth, or capacity per unit area.
9b Pavement 1600 sq.ft. Paved area. 0.02 5

10 Other 80000 cu.ft. Additional storage not listed above. 1.84 598

Total 4.99 1625

LID QuickSheet 1.1
URR SUMMARY Enter data into the shaded boxes only.

Line Unit Release Rate Target
20 0.50 cfs/acre See User Manual to select value.

Site Runoff
NoLID LID Reduction

21a Depth inches 4.19 2.78 34%
21b Volume ac-ft 34.91 23.13
22a Peak cfs 352.5 184.1 48%
22b Peak/area cfs/acre 3.52 1.84

Conventional Detention Needed to Meet Peak Flow Target
NoLID LID Reduction

23a Depth inches 1.98 1.10 44%
23b Volume ac-ft 16.49 9.18

LID Split Flow Option.  If discharge above target rate is directed into
retention at outlet, this retention volume can replace detention pond volume:

24a Depth inches 0.79 (Compare to Line 23a, LID column)
24b Volume ac-ft 6.59 (Compare to Line 23b, LID column)

25 Runoff Hydrographs for URR Analysis

Input by: Date:

Checked by: Date:
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LID QuickSheet 1.1
VDP SUMMARY Enter data into the shaded boxes only.

Line PREDEVELOPMENT CONDITIONS
30a CN 65 Area-weighted average for the predevelopment site condition.
30b Tc 50 minutes Cannot be less than 5 minutes.

VDP Critical Period
30c Start 11.75 hours To obtain start time, see Chapter 13 guidance.
30d Duration 6.00 hours To obtain duration, see Chapter 13 guidance.

Site Runoff
PreD NoLID LID Reduction

31a VDP Depth inches 1.83 3.17 2.29 28%
31b VDP Volume ac-ft 15.28 26.38 19.11
32a Peak cfs 130.5 352.5 184.1 48%
32b Peak/area cfs/acre 1.30 3.52 1.84

Retention Volume Still Required to Meet the VDP Target
NoLID LID Reduction

33a Depth inches 1.3 0.5 65%
33b Volume ac-ft 11.10 3.84

34 Runoff Hydrographs for VDP Analysis

Input by: Date:

Checked by: Date:

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

8 10 12 14 16 18 20 22 24 26

t  (hours)

q
 (

cf
s/

ac
re

)

NoLID LID PreD Critical Period

Figure 4.  Thumbnail graphic of the main  user interface for the LID Quicksheet.

On the first page, the user provides input values common to the URR and VDP.  
Primary variables for the input page include the precipitation depth and drainage area 
along with CN and Tc values.  The user can also input parameters associated with 
calculating the retention capacity of various on-site LID features, such as rain 
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gardens, permeable pavement and green roofs.  The capacity of storage devices not 
specifically listed can be added as well.

The second page provides input cells and output values pertaining specifically to the 
URR.  The output shows how LID site characteristics affect the runoff volume and 
peak flow, as well as the detention pond capacity (if any) still needed to fully control 
the peak flow after on-site retention features have been provided.

The third page provides input cells and output values pertaining specifically to the 
VDP.  And if the user wishes to do so, this page can be used to compare the volume 
and peak of the entire LID runoff hydrograph with the volume and peak of the entire 
predevelopment hydrograph.  An example of the hydrograph comparison chart 
provided on this page is shown in Figure 5.
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Figure 5.  Hydrograph comparisons for the Volumetric Design Procedure.

The accompanying user guide provides line by line instructions for each input value, 
along with an explanation of each output value.  A particularly important instruction 
advises users to evaluate each retention feature on the site of interest to determine 
whether it will be filled to capacity during the design storm event.  If the volume of 
runoff flowing into the retention feature is less than its full capacity, then that volume 
of runoff, rather than the capacity of that feature, should be used as the amount that 
affects the runoff hydrograph for the site.

As this manuscript was being finalized in early 2005, the MMSD was anticipating 
incorporation of the LID Quicksheet and user guidelines into the District’s 
stormwater management guidance. Prior review by a number of community 
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stakeholder groups has been favorable. Initial applications of this tool after it has been 
approved will provide valuable practical feedback.

CONCLUSIONS

The standard NRCS method for calculating runoff hydrographs can be adapted for 
low-impact development by aggregating the total runoff volume retained across a 
drainage area and evaluating it as a runoff depth that must be exceeded during a storm 
event before any runoff leaves the drainage area.   This adaptation is among the more 
technically defensible alternatives compared in this study and is especially suited
where all site runoff is directed through a number of similarly sized and distributed 
on-site stormwater retention features.  This approach may also be the one most likely 
to encourage low-impact development because it tends to predict the greatest 
reductions in the peak flow for a given retention volume.
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